首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   14篇
  国内免费   1篇
测绘学   13篇
大气科学   28篇
地球物理   124篇
地质学   84篇
海洋学   28篇
天文学   38篇
自然地理   19篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   11篇
  2016年   8篇
  2015年   4篇
  2014年   18篇
  2013年   17篇
  2012年   12篇
  2011年   22篇
  2010年   24篇
  2009年   30篇
  2008年   14篇
  2007年   14篇
  2006年   13篇
  2005年   21篇
  2004年   4篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
271.
Water scarcity is a media darling often times described as a trigger of conflict in arid regions, a by‐product of human influences ranging from desertification to climate change, or a combination of natural‐ and human‐induced changes in the water cycle. A multitude of indexes have been developed over the past 20 years to define water scarcity to map the “problem” and guide international donor investment. Few indexes include groundwater within the metrics of “scarcity.” Institutional communication contributes to the recognition of local or regional water scarcity. However, evaluations that neglect groundwater resources may incorrectly define conditions as scarce. In cases where there is a perception of scarcity, the incorporation of groundwater and related storage in aquifers, political willpower, new policy tools, and niche diplomacy often results in a revised status, either reducing or even eliminating the moniker locally. Imaginative conceptualization and innovative uses of aquifers are increasingly used to overcome water scarcity.  相似文献   
272.
In streams, benthic bacterial communities are integral to multiple aspects of ecosystem function, including carbon and nitrogen cycles. Variation both in terms of bacterial community structure (based on taxonomic and/or functional genes) and function can reveal potential drivers of spatiotemporal patterns in stream processes. In this study, the abundance and diversity of 16S rRNA genes and abundance of nosZ genes, encoding for nitrous oxide reductase, were related to denitrification and environmental conditions. Denitrification rates varied among the three streams examined, and within a given stream there were significant longitudinal differences. Likewise, bacterial community structure based on analysis of the 16S rRNA gene also differed significantly among streams. However, variation in denitrification rate was not well correlated with environmental or biological variables measured. In addition, relatively large numbers of denitrifiers occurred when denitrification rates were low. In conclusion, although the streams differed in environmental conditions as well as bacterial community structure, these differences did not explain much of the spatial variation in denitrification rates.  相似文献   
273.
We simultaneously fitted light and velocity data for the star–planet system OGLE-TR-56 with the Wilson–Devinney (WD) binary star program. We solved for orbital and planet parameters, along with the ephemeris using all currently available observational data. Parameters for the star (OGLE-TR-56a) were kept fixed at values derived from spectral characteristics and stellar evolutionary tracks. Our results are in good agreement with parameters obtained by other authors and have slightly smaller errors. We found no significant change in orbital period that may be due to orbital decay.  相似文献   
274.
Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). Monolithic millimeter wave integrated circuit (MMIC) technology makes the mass production of coherent detection receivers feasible. We have produced large numbers of MMIC amplifiers for CMB measurements. We have also demonstrated the viability of multi-function multi-chip modules as sensitive receiver front-ends. MMIC integration makes it possible to realize massive arrays of receivers suitable for measurements of the polarization of the CMB. We describe the development of the unit cell of such an array and the development plans for implementation.  相似文献   
275.

Background

Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.

Results

We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.

Conclusions

Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha?1/year?1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
  相似文献   
276.
A multi-year study was conducted in the eutrophic Lafayette River, a sub-tributary of the lower Chesapeake Bay during which uptake of inorganic and organic nitrogen (N) and C compounds was measured during multiple seasons and years when different dinoflagellate species were dominant. Seasonal dinoflagellate blooms included a variety of mixotrophic dinoflagellates including Heterocapsa triquetra in the late winter, Prorocentrum minimum in the spring, Akashiwo sanguinea in the early summer, and Scrippsiella trochoidea and Cochlodinium polykrikoides in late summer and fall. Results showed that no single N source fueled algal growth, rather rates of N and C uptake varied on seasonal and diurnal timescales, and within blooms as they initiated and developed. Rates of photosynthetic C uptake were low yielding low assimilation numbers during much of the study period and the ability to assimilate dissolved organic carbon augmented photosynthetic C uptake during bloom and non-bloom periods. The ability to use dissolved organic C during the day and night may allow mixotrophic bloom organisms a competitive advantage over co-occurring phytoplankton that are restricted to photoautotrophic growth, obtaining N and C during the day and in well-lit surface waters.  相似文献   
277.
A critical need exists for site-specific hydrogeologic data in order to determine potential hazards of induced seismicity and to manage risk. By 2015, the United States Geological Survey (USGS) had identified 17 locations in the USA that are experiencing an increase in seismicity, which may be potentially induced through industrial subsurface injection. These locations span across seven states, which vary in geological setting, industrial exposure and seismic history. Comparing the research across the 17 locations revealed patterns for addressing induced seismicity concerns, despite the differences between geographical locations. Most induced seismicity studies evaluate geologic structure and seismic data from areas experiencing changes in seismic activity levels, but the inherent triggering mechanism is the transmission of hydraulic pressure pulses. This research conducted a systematic review of whether data are available in these locations to generate accurate hydrogeologic predictions, which could aid in managing seismicity. After analyzing peer-reviewed research within the 17 locations, this research confirms a lack of site-specific hydrogeologic data availability for at-risk areas. Commonly, formation geology data are available for these sites, but hydraulic parameters for the seismically active injection and basement zones are not available to researchers conducting peer-reviewed research. Obtaining hydrogeologic data would lead to better risk management for injection areas and provide additional scientific evidential support for determining a potentially induced seismic area.  相似文献   
278.
Deposits preserved on peaks in the southern Peruvian Andes are evidence for past glacial fluctuations and, therefore, serve as a record of both the timing and magnitude of past climate change. Moraines corresponding to the last major expansion of ice on Nevado Coropuna date to 20‐25 ka, during the last glacial maximum. We reconstructed the snowline at Coropuna for this period using a combined geomorphic‐numeric approach to provide a first‐order estimate of the magnitude of late‐Pleistocene climate change. Our reconstructions show that snowline was approximately 550‐770 m lower during the last glacial maximum than during the late Holocene maximum, which ended in the 19th century, and ~750 m lower than today. While these values are similar to data from nearby Nevado Solimana, reconstructions from the neighbouring peak of Nevado Firura reveal a smaller snowline depression, suggesting the glacial response to climate forcing in the tropics is strongly influenced by non‐climatic factors. These data constitute some of the first directly dated palaeo‐snowline data from the arid tropics and suggest that the magnitude of the last glaciation in at least parts of the tropical Andes was similar to late‐Pleistocene events at higher latitudes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
279.
Most semi‐distributed watershed water quality models divide the watershed into hydrologic response units (HRU) with no flow among them. This is problematic when watersheds are delineated to include variable source areas (VSAs) because it is the lateral flows from upslope areas to downslope areas that generate VSAs. Although hydrologic modellers have often successfully calibrated these types of models, there can still be considerable uncertainty in model results. In this paper, a topographic‐index‐based method is described and tested to distribute effective soil water holding capacity among HRUs, which can be subsequently adjusted using the watershed baseflow coefficient. The method is tested using a version of the Soil and Water Assessment Tool (SWAT) model that simulates VSA runoff and is applied to two watersheds: a New York State (NYS) watershed, and one in the head waters of the Blue Nile Basin (BNB) in Ethiopia. Daily streamflow predicted using effective soil water storage capacities based only on the topographic index were reassuringly accurate in both the NYS watershed (daily Nash Sutcliffe (E) = 0·73) and in the BNB (E = 0·70). Using the baseflow coefficient to adjust the effective soil water storage capacity only slightly improved streamflow predictions in NYS (E = 0·75) but substantially improved the BNB predictions (E = 0·80). By comparison, the standard SWAT model, which uses the traditional look‐up tables to determine a runoff curve number, performed considerably less accurately in un‐calibrated form (E = 0·51 for NYS and E = 0·45 for BNB), but improved substantially when explicitly calibrated to streamflow measurements (E = 0·76 for NYS and E = 0·67 for the BNB). The calibration method presented here provides a parsimonious, systematic approach to using established models in VSA watersheds that reduces the ambiguity inherent in model calibration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
280.
Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions.Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号